Abstract

The resulting surface quality after 5-axis ball end milling is of superior importance because finish milling is often the last process step determining the functional performance of a component. However, the prediction of surface topography is still a challenging task. Especially in ball end milling with the characteristic sickle shaped chip cross section, ploughing effects in the area of low chip thickness result in plastic deformation and surface defects (also known as burr). This paper provides a new approach to predict those surface defects by considering the minimum chip thickness for complex milling engagement conditions within a virtual process design. This allows the choice of suitable process parameters without extensive experimental efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.