Abstract

Chip thickness in milling is one of the most fundamental parameters, which can significantly affect cutting force, cutting heat, cutting stability and machined surface topography for computer-aided process planning. In this paper, a combination of a three-dimensional trochoidal tooth trajectory model (3D3T) and engagement-boundary chip model is developed to determine instantaneous chip thickness in 5-axis ball-end finish milling. In comparison with the chip volume measured in a commercial software package (Unigraphics) the accuracy of the proposed model has been numerically validated with various process parameters including cutting depth, tool–workpiece inclination and cutter runout. The differences in time-varying delay and dynamic chip thickness as well as stability are compared with different models to show the impact of using 3D3T mechanism for chip thickness modeling in 5-axis ball-end finish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.