Abstract
The peak strength is a significant parameter in rock engineering, the traditional empirical strength criteria for rocks show good agreement with test results under specific conditions. However, it is not completely accurate for a wide range of loading stress domains and uncorrelated rock types. In this research, porosity, uniaxial compressive strength (UCS) and confining pressure are selected as input variables, and the artificial bee colony (ABC) algorithm is used to optimize the support vector machine (SVM) model. Finally, we validate and comparatively analyze the applicability of the models based on the testing set and the comprehensive evaluation indexes (namely correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE)). Meanwhile, the cosine amplitude method is applied to analyze the correlation between the peak strength and the input variables. The results indicate that both SVM model and ABC-SVM model are suitable for the prediction of peak strength under triaxial compression. Additionally, the ABC-SVM model obviously has better prediction performance by comparison.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have