Abstract
In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.e., mid-infrared reflection, Raman light scattering, and laser-induced plasma spectroscopies, to predict the chemical composition of olivine under a limited calibration input, namely using two bulk samples of natural olivine, chemically close to the end-members of the mineral group. We determine the accuracy of the forsterite numbers obtained with each technique and discuss the choice of calibration methods applicable to limited in situ calibration input, which are summarized in recommendations for space instrumentation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have