Abstract
Brain arteriovenous malformations (bAVMs) are vascular abnormalities that can be treated with embolization or radiotherapy to prevent the risk of future rupture. In this study, we use hand-crafted radiomics and deep learning techniques to predict favorable vs. unfavorable outcomes following Gamma Knife radiosurgery (GKRS) of bAVMs and compare their prediction performances. One hundred twenty-six patients seen at one academic medical center for GKRS obliteration of bAVMs over 15 years were retrospectively reviewed. Forty-two patients met the inclusion criteria. Favorable outcomes were defined as complete nidus obliteration demonstrated on cerebral angiogram and asymptomatic recovery. Unfavorable outcomes were defined as incomplete obliteration or complications relating to the AVM that developed after GKRS. Outcome predictions were made using a random forest model with hand-crafted radiomic features and a fine-tuned ResNet-34 convolutional neural network (CNN) model. The performance was evaluated by using a ten-fold cross-validation technique. The average accuracy and area-under-curve (AUC) values of the Random Forest Classifier (RFC) with radiomics features were 68.5 ±9.80% and 0.705 ±0.086, whereas those of the ResNet-34 model were 60.0 ±11.9% and 0.694 ±0.124. Four radiomics features used with RFC discriminated unfavorable response cases from favorable response cases with statistical significance. When cropped images were used with ResNet-34, the accuracy and AUC decreased to 59.3 ± 14.2% and 55.4 ±10.4%, respectively. A hand-crafted radiomics model and a pre-trained CNN model can be fine-tuned on pre-treatment MRI scans to predict clinical outcomes of AVM patients undergoing GKRS with equivalent prediction performance. The outcome predictions are promising but require further external validation on more patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.