Abstract

BackgroundThe Department of Critical Care Medicine has the highest risk of nosocomial infection. This study used an autoregressive integrated moving average (ARIMA) model to simulate the prevalence of nosocomial infections in the Department of Critical Care Medicine of Guizhou Province. We also provided a policy basis for the prevention and control of hospital infection in the Department of Critical Care Medicine of Guizhou Province.MethodsThe data of ventilator-associated pneumonia, vascular catheter-related bloodstream infections, and urinary tract intubation-related urinary tract infections in nine tertiary A comprehensive treatment hospitals in Guizhou province from January 2014 to December 2019 were collected. The ARIMA time series model was used to evaluate the model fitting and prediction effects.ResultsAfter comparison, in the Department of Critical Care Medicine of Guizhou Province, the unsurpassed model of ventilator-associated pneumonia was the ARIMA (0,1,1) model, with a residual Ljuing-Box Q test result of Q=10.832 (P=0.865), suggesting it is a white noise sequence and its simulation and prediction effects are beneficial. The best model of vascular catheter-related bloodstream infection was the ARIMA (0,0,1) model, with a residual Ljuing-Box Q test result of Q=14.914 (P=0.602). These results suggest that it is a white noise sequence, and its simulation and prediction effects are sufficient. The optimal model of urinary tract intubation-related urinary tract infection is ARIMA (1,0,0), and the residual Ljuing-Box Q test result is Q=15.042 (P=0.592), suggesting it is a white noise sequence with an accurate simulation and prediction effect.ConclusionsThe ARIMA model can accurately simulate and predict nosocomial infection incidence rate in the Department of Critical Care Medicine of Guizhou Province, and can provide a reference for the prevention and control of nosocomial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.