Abstract

The goal of the present study was to define gene expression signatures that predict a chemosensitivity of non-small cell lung cancer (NSCLC) to cisplatin and paclitaxel. To generate set of candidate genes likely to be predictive a current knowledge of the pathways involved in resistance and sensitivity to individual drugs was used. Forty four genes coding proteins belonging to following categories: ATP-dependent transport proteins, detoxification system proteins, reparation system proteins, tubulin and proteins responsible for its synthesis, cell cycle and apoptosis proteins were considered. Eight NSCLC cell lines (A549, Calul, H1299, H322, H358, H460, H292, and H23) were used in our study. For each NSCLC cell line a cisplatin and paclitaxel chemosensitivity as well as an expression level of 44 candidate genes were evaluated. To develop a chemosensitivity prediction model based on selected genes expression level a multiple regression analysis was performed. The model based on the expression level of 11 genes (TUBB3, TXR1, MRP5, MSH2, ERCC1, STMN, SMAC, FOLR1, PTPN14, HSPA2, GSTP1) allowed us to predict the paclitaxel cytotoxic concentration with high level of correlation (r = 0.91, p < 0.01). However, none model developed was able to reliably predict a sensitivity of the NSCLC cells to cisplatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.