Abstract

IntroductionDespite the clinical success of PD-1/PD-1-ligand immunotherapy in non-small cell lung cancer (NSCLC), the appearance of primary and acquired therapy resistance is a major challenge reflecting that the mechanisms regulating the expression of the PD-1-ligands PD-L1 and PD-L2 are not fully explored. Type I and II interferons (IFNs) induce PD-L1 and PD-L2 expression. Here, we examined if PD-L1 and PD-L2 expression also can be induced by type III IFN, IFN-λ, which is peculiarly important for airway epithelial surfaces. MethodsIn silico mRNA expression analysis of PD-L1 (CD274), PD-L2 (PDCD1LG2), and IFN- λ signaling signature genes in NSCLC tumors and cell lines was performed using RNA sequencing expression data from TCGA, OncoSG, and DepMap portals. IFN-λ-mediated induction of PD-L1 and PD-L2 expression in NSCLC cell lines was examined by real-time quantitative polymerase chain reaction and flow cytometry. ResultsIFNL genes encoding IFN- λ variants are expressed in the majority of NSCLC tumors and cell lines along with the IFNLR1 and IL10R2 genes encoding the IFN-λ receptor subunits. The expression of PD-L1 and PD-L2 mRNA is higher in NSCLC tumors with IFNL mRNA expression compared to tumors without IFNL expression. In the NSCLC cell line HCC827, stimulation with IFN-λ induced both an increase in PD-L1 and PD-L2 mRNA expression and cell surface abundance of the corresponding proteins. In the NSCLC cell line A427, displaying a low basal expression of PD-L1 and PD-L2 mRNA and corresponding proteins, stimulation with IFN-λ resulted in an induction of the former. ConclusionThe type III IFN, IFN- λ, is capable of inducing PD-L1 and PD-L2 expression, at least in some NSCLC cells, and this regulation will need acknowledgment in the development of new diagnostic procedures, such as gene expression signature profiles, to improve PD-1/PD-1-ligand immunotherapy in NSCLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.