Abstract

The authors develop a computational approach that integrates machine learning (ML) and density functional theory (DFT) with experimental data to predict formable and thermodynamically stable iodine-containing apatites. This is an important problem because radioactive iodine is toxic and capturing it in solid waste forms have implications in remediation treatments. The authors train ML models using 336 compositions and screen 54 iodine-containing compounds in apatite stoichiometry. ML models predict 18 as formable and 24 as nonformable in the apatite structure; 12 compounds were identified to be uncertain. DFT convex hull predicted two to be thermodynamically stable, one as metastable, and nine as unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.