Abstract

Prediction of disability progression in multiple sclerosis patients is a critical component of their management. In particular, one challenge is to identify and characterize a patient profile who may benefit of efficient treatments. However, it is not yet clear whether a particular relation exists between the brain structure and the disability status.This work aims at producing a fully automatic model for the expanded disability status score estimation, given the brain structural connectivity representation of a multiple sclerosis patient. The task is addressed by first extracting the connectivity graph, obtained by combining brain grey matter parcellation and tractography extracted from Diffusion and T1-weighted Magnetic Resonance (MR) images, and then processing it via a convolutional neural network (CNN) in order to compute the predicted score. Experiments show that the herein proposed approach achieves promising results, thus resulting as an important step forward on the road to better predict the evolution of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.