Abstract

A data-driven model is presented for accurate prediction of multiaxial fatigue life based upon the principle of transfer learning (TL). The Tradaboost framework is explored to adjust the weights of training data from different sources, actuating information transfer from domain knowledge to the data-driven modeling of multiaxial fatigue life. Subsequently, extensive experimental results tested under the proportional and non-proportional circle loadings are collected for model evaluation. The results demonstrate that the proposed model is more accurate than domain knowledge-based, conventional data-driven, and comparable TL-based models, with a low data requirement, showcasing good applicability for multiaxial fatigue life assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.