Abstract

Multiaxial high-cycle fatigue failure criterion and life prediction is important for structural components under complex low stress. A new multiaxial high-cycle fatigue damage parameter based on the plane of maximum shear stress is proposed, which includes the maximum shear stress amplitude, normal stress amplitude and maximum equivalent normal stress. The maximum equivalent normal stress is defined in the form of SWT stress function considering the influence of mean stress. The feasibility of the proposed failure criterion and life prediction model is verified by test data of different materials. The predicted results show that the life prediction error of the proposed fatigue model is basically within three times by comparing with McDiarmid, Matake, Crossland and Papadopoulos fatigue models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.