Abstract
The tunnel vibration level is usually employed as a vibration source intensity of the empirical prediction method. Currently, the analogy test and data base are two main means to determine the vibration source intensity. To improve the accuracy efficiency, the machine learning (ML) method was introduced to predict the tunnel vibration responses. To acquire model training samples, the measurements were performed in 80 different running tunnel sections of Beijing metro lines. Two types of method, back propagation neural network (BPNN) and generalised regression neural network (GRNN) were employed, which can make full use of characteristics of measured samples and reduce the data noise. The results indicate that the prediction efficiency is high and the mean square errors of the two ML methods are acceptable. Accordingly, both of the ML methods can be used as the reference of vibration source intensity in metro train‐induced environmental impact evaluation. GRNN has relatively better predicting ability than BPNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.