Abstract
Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.