Abstract

For patient management and prognosis, accurate assessment of mediastinal lymph node (LN) status is essential. This study aimed to use machine learning approaches to assess the status of confusing LNs in the mediastinum using positron emission tomography/computed tomography (PET/CT) images; the results were then compared with the diagnostic conclusions of nuclear medicine physicians. A total of 509 confusing mediastinal LNs that had undergone pathological assessment or follow-up from 320 patients from three centres were retrospectively included in the study. LNs from centres I and II were randomised into a training cohort (N=324) and an internal validation cohort (N=81), while those from centre III patients formed an external validation cohort (N=104). Various parameters measured from PET and CT images and extracted radiomics and deep learning features were used to construct PET/CT-parameter, radiomics, and deep learning models, respectively. Model performance was compared with the diagnostic results of nuclear medicine physicians using the area under the curve (AUC), sensitivity, specificity, and decision curve analysis (DCA). The coupled model of gradient boosting decision tree-logistic regression (GBDT-LR) incorporating radiomic features showed AUCs of 92.2% [95% confidence interval (CI), 0.890-0.953], 84.6% (95% CI, 0.761-0.930) and 84.6% (95% CI, 0.770-0.922) across the three cohorts. It significantly outperformed the deep learning model, the parametric PET/CT model and the physician's diagnosis. DCA demonstrated the clinical usefulness of the GBDT-LR model. The presented GBDT-LR model performed well in evaluating confusing mediastinal LNs in both internal and external validation sets. It not only crossed radiometric features but also avoided overfitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call