Abstract

This study is a part of a comprehensive investigation, to conduct bench-, pilot-, and full-scale experiments and theoretical studies to elucidate the fundamental mechanisms associated with mercury oxidation and capture in coal-fired power plants. The objective was to quantitatively describe the mechanisms governing adsorption, desorption, and oxidation of mercury in coal-fired flue gas carbon, and establish reaction-rate constants based on experimental data. A chemical-kinetic model was developed which consists of homogeneous mercury oxidation reactions as well as heterogeneous mercury adsorption reactions on carbon surfaces. The homogeneous mercury oxidation mechanism has eight reactions for mercury oxidation. The homogeneous mercury oxidation mechanism quantitatively predicts the extent of mercury oxidation for some of datasets obtained from synthetic flue gases. However, the homogeneous mechanism alone consistently under predicts the extent of mercury oxidation in full scale and pilot scale units containing actual flue gas. Heterogeneous reaction mechanisms describe how unburned carbon or activated carbon can effectively remove mercury by adsorbing hydrochloric acid (HCI) to form chlorinated carbon sites, releasing the hydrogen. The elemental mercury may react with chlorinated carbon sites to form sorbed HgCl. Thus mercury is removed from the gas-phase and stays adsorbed on the carbon surface. Predictions using this model have very good agreement with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.