Abstract

The impact of different fly ash samples on mercury speciation in simulated flue gas at 140 °C was evaluated in this study. Experiments were conducted in a fixed bed reactor to determine the impact of fly ash morphological characteristics and chemical composition on mercury up-take and oxidation. No homogeneous mercury oxidation was observed at 140 °C. Mercury uptake tests with different fly ash samples revealed that loss on ignition (LOI), surface area, and particle size all had positive effects on mercury oxidation and adsorption (i.e., as the above parameters increased, mercury adsorption and oxidation also increased). Experiments with pure inorganic components showed that alumina (Al2O3), silica (SiO2), calcium oxide (CaO), magnesium oxide (MgO), and titania (TiO2) do not promote mercury oxidation or adsorption. Ferric oxide (Fe2O3) and unburned carbon, on the other hand, showed significant mercury oxidation and capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.