Abstract

Estimation of the amount of waste to be generated in the coming years is critical for the evaluation of existing waste treatment service capacities. This study was conducted to evaluate the performance of various mathematical modeling methods to forecast medical waste generation of Istanbul, the largest city in Turkey. Autoregressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), Grey Modeling (1,1) and Linear Regression (LR) analysis were used to estimate annual medical waste generation from 2018 to 2023. A 23-year data from 1995 to 2017 provided from the Istanbul Metropolitan Municipality's affiliated environmental company ISTAC Company were utilized to examine the forecasting accuracy of methods. Different performance measures such as mean absolute deviation (MAD), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2) were used to evaluate the performance of these models. ARIMA (0,1,2) model with thelowestRMSE (763.6852), MAD (588.4712), and MAPE (11.7595) valuesand the highestR2 (0.9888) value showed a superior prediction performance compared to SVR, Grey Modeling (1,1), and LR analysis. The results obtained from the models indicated that the total amount of annual medical waste to be generated will increase from about 26,400 tons in 2017 to 35,600 tons in 2023. ARIMA (0,1,2) model developed in this study can help decision-makers to take better measures and develop policies regarding waste management practices in thefuture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.