Abstract
Rice husk ash concrete (RHAC) shows promise as a beneficial supplementary material in concrete. However, determining mechanical properties such as compressive strength (CS) and splitting tensile strength (STS) of RHAC through conventional lab-scale methods is laborious and time-consuming. In this research, seven important variables were selected as inputs to predict CS and STS using machine learning (ML) models, including Gaussian Process Regression (GPR), Random Forest Regression (RFR), and Decision Tree Regression (DTR) with grid search optimization. The result presented revealed that selected machine learning models provide well accuracy for CS and STS estimates. Among these, the DTR model demonstrated superior performance, with CS prediction R2, RMSE, MAE, and MAPE values of 0.964, 3.314, 2.225, and 5.068, at the testing stage respectively. For STS at the testing stage, DTR achieved R2 of 0.969, RMSE of 0.177, MAE of 0.1322, and MAPE of 3.413. GPR and RFR models also performed well, with R2 values of 0.9434 and 0.9530 for CS prediction. The partial dependence plot (PDP) analysis revealed the optimal mix design parameters for achieving the desired strength. These results offer valuable insights for sustainable construction, allowing engineers to efficiently predict and optimize material performance, reducing the reliance on time-consuming lab methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have