Abstract

A machine learning algorithm (MLA) has been applied to a Fourier transform infrared spectroscopy (FTIR) dataset previously analysed with a principal component analysis (PCA) linear discriminant analysis (LDA) model. This comparison has confirmed the robustness of FTIR as a prognostic tool for oral epithelial dysplasia (OED). The MLA is able to predict malignancy with a sensitivity of 84 ± 3% and a specificity of 79 ± 3%. It provides key wavenumbers that will be important for the development of devices that can be used for improved prognosis of OED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.