Abstract
The structure of pollen has evolved depending on its local environment, competition, and ecology. As pollen grains are generally of size 10–100 microns with nanometre-scale substructure, scanning electron microscopy is an important microscopy technique for imaging and analysis. Here, we use style transfer deep learning to allow exploration of latent w-space of scanning electron microscope images of pollen grains and show the potential for using this technique to understand evolutionary pathways and characteristic structural traits of pollen grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.