Abstract

Recently in urban areas, road traffic noise is one of the primary sources of noise pollution. Variation in noise level is impacted by the synthesis of traffic and the percentage of heavy vehicles. Presentation to high noise levels may cause serious impact on the health of an individual or community residing near the roadside. Thus, predicting the vehicular traffic noise level is important. The present study aims at the formulation of regression, an artificial neural network (ANN) and an adaptive neuro-fuzzy interface system (ANFIS) model using the data of observed noise levels, traffic volume, and average speed of vehicles for the prediction of L10 and Leq. Measured noise levels are compared to the noise levels predicted by the experimental model. It is observed that the ANFIS approach is more superior when compared to output given by regression and an ANN model. Also, there exists a positive correlation between measured and predicted noise levels. The proposed ANFIS model can be utilized as a tool for traffic direction and planning of new roads in zones of similar land use pattern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.