Abstract

ABSTRACT Dynamic human activity intensity information is of great importance in many location-based applications. However, two limitations remain in the prediction of human activity intensity. First, it is hard to learn the spatial interaction patterns across scales for predicting human activities. Second, social interaction can help model the activity intensity variation but is rarely considered in the existing literature. To mitigate these limitations, we proposed a novel dynamic activity intensity prediction method with deep learning on graphs using the interactions in both physical and social spaces. In this method, the physical interactions and social interactions between spatial units were integrated into a fused graph convolutional network to model multi-type spatial interaction patterns. The future activity intensity variation was predicted by combining the spatial interaction pattern and the temporal pattern of activity intensity series. The method was verified with a country-scale anonymized mobile phone dataset. The results demonstrated that our proposed deep learning method with combining graph convolutional networks and recurrent neural networks outperformed other baseline approaches. This method enables dynamic human activity intensity prediction from a more spatially and socially integrated perspective, which helps improve the performance of modeling human dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.