Abstract
There is a complex high-dimensional nonlinear mapping relationship between the compressive strength of High-Performance Concrete (HPC) and its components, which has great influence on the accurate prediction of compressive strength. In this paper, an efficient robust software calculation strategy combining BP Neural Network (BPNN), Support Vector Machine (SVM) and Genetic Algorithm (GA) is proposed for the prediction of compressive strength of HPC. 8 features were extracted from the previous literature, and a compressive strength database containing 454 sets of data was constructed. The model was trained and tested, and the performance of 4 Machine Learning (ML) models, namely BPNN, SVM, GA-BPNN and GA-SVM, was compared. The results show that the coupled model is superior to the single model. Moreover, because GA-SVM has better generalization ability and theoretical basis, its convergence speed and prediction accuracy are better than GA-BPNN. Then Grey Relational Analysis (GRA) and Shapley analysis were used to verify the interpretability of the GA-SVM model, which showed that the water-binder ratio had the most significant influence on the compressive strength. Finally, the combination of multiple input variables to evaluate the compressive strength supplemented this research, and again verified the significant influence of water-binder ratio, providing reference value for subsequent research.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have