Abstract

In this paper, the relationship between microstructure, parameters of cyclic loading and high cycle fatigue property of Ti-6Al-4V alloy was established by artificial neural network (ANN) modeling. The back propagation (BP) neural network and radial basis function (RBF) neural network were established by MATLAB. The input parameters of these models were the primary α volume fraction, primary α size, cyclic loading frequency and stress ratio. The output parameter was high cycle fatigue strength. The neural networks were trained with dataset collected from the literature. The prediction results showed that both of the networks have good generalization ability. In addition, the BP neural network with Levenberg-Merquardt (LM) learning algorithm has better fault tolerance and versatility in dealing with high cycle fatigue property, which is able to predict the high cycle fatigue property with a high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call