Abstract
Having gas turbine components that can withstand high temperatures is a key factor in improving turbine efficiency; therefore, a deeper understanding of the heat transfer phenomena associated with the flow of hot gases over Nozzle Guide Vanes (NGVs) is crucial for proper vane design and implementation of adequate cooling schemes. In this study, the heat transfer distribution over the surface of a nonfilm-cooled NGV in a transonic annular cascade (Mexit=0.89, Reexit=2.6×106) is investigated numerically using a three-dimensional computational fluid dynamics (CFD) model and compared to results from a 2-D Boundary Layer (BL) code (TEXSTAN). The CFD model has been built and analyzed using a finite volume based commercial code (ANSYS CFX). Although the industrial turbine vane is film cooled, the analysis presented will be for the uncooled vane. In order to validate the CFD model against experimental data, a study is carried out on the NASA C3X vane; a CFD model of the C3X vane was built and several modeling parameters are varied in order to obtain good agreement with the experimental data. In addition, the numerical results are compared to those of other analytical and numerical simulations of the C3X vane. The methods found to yield the best agreement for the C3X are implemented in the modeling of the industrial NGV.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have