Abstract

Groundwater level fluctuations are one of the main components of the hydrogeological cycle and one of the required variables for many water resources operation models. The numerical models can estimate groundwater level (GWL) based on extensive statistics and information and using complex equations in any area. But one of the most important challenges in analyzing and predicting groundwater depletion in water management is the lack of reliable and complete data. For this reason, the use of artificial intelligence models with high predictive accuracy and due to the need for less data is inevitable. In recent years, the use of different numerical models has been noticed as an efficient solution. These models are able to estimate groundwater levels in any region based on extensive statistics and information and also various field experiments such as pumping tests, geophysics, soil and land use maps, topography and slope data, different boundary conditions and complex equations. In the current research, first, by using available statistics, information and maps, the groundwater level fluctuations of the Sonqor plain are simulated by the GMS model, and the accuracy of the model is evaluated in two stages of calibration and validation. Then, due to the need for much less data volume in artificial intelligence-based methods, the GA-ANN and ICA-ANN hybrid methods and the ELM and ORELM models are utilized. The results display that the output of the ORELM model has the best fit with observed data with a correlation coefficient equal to 0.96, and it also has the best and closest scatter points around the 45 degrees line, and in this sense, it is considered as the most accurate model. To ensure the correct selection of the best model, the Taylor diagram is also used. The results demonstrate that the closest point to the reference point is related to the ORELM method. Therefore, to predict the groundwater level in the whole plain, instead of using the complex GMS model with a very large volume of data and also the very time-consuming process of calibration and verification, the ORELM model can be used with confidence. This approach greatly helps researchers to predict groundwater level variations in dry and wet years using artificial intelligence with high accuracy instead of numerical models with complex and time-consuming structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.