Abstract

Quantitative structure-property relationships (QSPR) are developed to correlate glass transition temperatures and chemical structure. Both monomer and repeat unit structures are used to build several QSPR models for Parts 1 and 2 of this study, respectively. Models are developed using numerical descriptors, which encode important information about chemical structure (topological, electronic, and geometric). Multiple linear regression analysis (MLRA) and computational neural networks (CNNs) are used to generate the models after descriptor generation. Optimization routines (simulated annealing and genetic algorithm) are utilized to find information-rich subsets of descriptors for prediction. A 10-descriptor CNN model was found to be optimal in predicting T(g) values using the monomer structure (Part 1) for 165 polymers. A committee of 10 CNNs produced a training set rms error of 10.1K (r2 = 0.98) and a prediction set rms error of 21.7 K (r2 = 0.92). An 11-descriptor CNN model was developed for 251 polymers using the repeat unit structure (Part 2). A committee of CNNs produced a training set rms error of 21.1K (r2 = 0.96) and a prediction set rms error of 21.9 K (r2 = 0.96).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.