Abstract
A quantitative structure-property relationship (QSPR) is developed to relate the molecular structures of 420 diverse organic compounds to their vapor pressures at 25 degrees C expressed as log(vp), where vp is in pascals. The log(vp) values range over 8 orders of magnitude from -1.34 to 6.68 log units. The compounds are encoded with topological, electronic, geometrical, and hybrid descriptors. Statistical and computational neural network (CNN) models are built using subsets of the descriptors chosen by simulated annealing and genetic algorithm feature selection routines. An 8-descriptor CNN model, which contains only topological descriptors, is presented which has a root-mean-square (rms) error of 0.37 log unit for a 65-member external prediction set. A 10-descriptor CNN model containing a larger selection of descriptor types gives an improved rms error of 0.33 log unit for the external prediction set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Information and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.