Abstract

Acoustics have always played a central role in contemporary engineering, especially in the fields of communication, sensing, and even in more extraordinary applications such as non-invasive high-intensity focused ultrasound surgery. The rapid development of nano-scale-based technologies makes imperative the need for novel acoustic devices that take advantage of nanomaterials as well as their extraordinary physical properties. The successful design of such acoustic components requires the implementation of efficient nanostructures accompanied by fast and accurate modeling. Here, endohedral fullerene and carbon nano-onion one-dimensional nano-chains are explored as possible candidate nanodevices that generate unique frequency band gaps. The wave propagation in chains of fullerene-based molecules is predicted by representing them as infinite one-dimensional mass-in-mass chains properly assembled by the use of springs whose coefficients are expressed according to the van der Walls (vdW) atomistic interactions. Based on Bloch's theorem, interesting elastic wave dispersion curves are obtained and illustrated, characterized by distinctive frequency ranges that waves cannot propagate, revealing the unique vibroacoustic behavior of the proposed nano-systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.