Abstract

The application of high heat fluxes to turbulent gas flows causes significant variation of the gas properties due to the large temperature increase, invalidating the use of design relations such as the popular Dittus-Boelter correlation and of conventional turbulence models. To develop turbulence models for such flows, the predictive capabilities of a Reynolds stress equation model (RSM) with turbulence heat flux equations and of a model were examined. We have employed the turbulence stress-thermal energy gradient production, in the pressure-temperature fluctuation gradient correlation, for the turbulence heat flux equations, in order to improve the accuracy of predictions for heat transfer accompanied by laminarization. The model has already been validated for gas flows in annular tubes; in this study its applicability to a circular tube was examined. Validations were performed by comparison of predictions with constant fluid properties at fully-established conditions and to experimental measurements extending to laminarization conditions. The turbulence models both predict laminar and turbulent results and the approximate transition Reynolds number for the fully-established flow at low heat fluxes. The results predicted with both models also agreed well with data on laminarizing flows. Thus, the models presented here are capable of predicting the flow reasonably from low to high heat fluxes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call