Abstract

The basic goal of this study is to present a numerical simulation model for turbulent water flow issued on frozen scoured beds. The model uses a finite volume method to solve the equations of motion and transport equations for two dimensions on a transformed rectangular domain using boundary-fitted coordinates. The internal characteristics of the mean flow of submerged horizontal jets including surface profiles on frozen scoured beds are computed by a two-dimensional k–ε turbulence model. Computations are carried out at different frozen-scoured bed profiles. A staggered grid system is adapted for variable arrangements to avoid the well-known checkerboard oscillations in pressure and velocity. The SIMPLE algorithm is adapted for the computation. No experimental studies were performed during this investigation. The diffusion characteristics of the submerged jet, growth of boundary layer thickness, velocity distribution within the boundary layer, and shear stress at the scour are investigated and compared with the results of others. Key words: boundary-fitted coordinates, local scour, k–ε model, finite volume method, horizontal jets, submerged jets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call