Abstract

Airfoil flow field data acquisition is pivotal to the study of aerodynamics, traditionally relying on time-consuming computational fluid dynamics simulations or expensive wind tunnel tests. Herein, we introduce a new methodology leveraging Transformer Neural Network (TNN), which differs from conventional methodologies by employing self-attention mechanisms, to effectively predict these critical flow field data using historical data. A comprehensive set of experiments demonstrates the TNN model’s exceptional predictive accuracy, achieving over 95% across various airfoils under various operating conditions. Beyond accuracy and efficiency, we introduce an attention principle in our TNN model enhancing its interpretability. By aligning the TNN model’s attention distribution with the aerodynamic principles of airfoils, we illustrate how it utilises these geometric attributes in its predictions, thereby offering theoretical backing to its predictive outcomes. Our TNN model’s commendable accuracy, efficiency and interpretability illuminate the pathway for continued exploration in the fusion of deep learning with computational fluid dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call