Abstract

The titanium alloy Ti-6Al-4V is known to exhibit creep behavior at temperatures as low as room temperature. Consequently, for cyclic loading with hold times it is possible that the rate dependent behavior of Ti-6Al-4V can have negative bearing upon the low cycle fatigue life. If this effect is shown to be present at room temperatures, then it will certainly be magnified and, therefore, very important at elevated temperatures. In order to account for the effects of strain rate dependent deformation in fatigue life prediction methodology, it was considered necessary to incorporate a viscoplastic constitutive equation into the fatigue life calculational algorithm. After critical evaluation of a score of recently proposed viscoplastic constitutive theories, the Chaboche theory, which employs a yield condition, was considered to offer the most promise for description of a wide range of inelastic material behavior characteristics. The six viscoplastic material parameters that are required for nonelevated temperature applications were determined from data of uniaxial tests, conducted elsewhere and made avialable to this study. The fatigue life testing of smooth round bar specimens included load cycles with load hold times. Fatigue life predictions were performed using the equivalent fully reversed symmetric cycle, and the Smith-Watson-Topper parameter, for load cycles having varying stress amplitudes and varying hold times. The predicted fatigue life results indicate that: (i) For a given stress level above the initial yield stress, shorter load hold time periods result in longer fatigue lives. (ii) The higher the stress level (above the initial yield stress) the more pronounced becomes the effect of the load hold time on the fatigue life prediction. (iii) The rate of loading also has an effect on fatigue life. Analysis indicates that the slower the rate of loading, the higher the rate dependent (primary creep) deformation, and consequently, the lower the resulting fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.