Abstract
In tube hydroforming process (THP), two types of loading, internal pressure and axial feeding and in particular the combination of them, are needed to feed the material into the cavities of the die to form the workpiece into the desired shape. If the variation of pressure versus axial feeding is not determined properly, the workpiece may be buckled, wrinkled or burst during THP. The appropriate variation is normally determined by experiment which is expensive and time-consuming. In this work, numerical simulation using Johnson-Cook models for predicting the elasto-plastic response and the failure of the material are employed to obtain the best combination of internal pressure and axial feeding. The numerical simulations are examined by a number of experiments conducted in the present investigation. The results show very close agreement between the numerical simulations and the experiments, suggesting that the numerical simulations using Johnson-Cook material and failure models provide a valuable tool to examine the different parameters involved in THP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have