Abstract

This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.