Abstract

A computational model is employed to study the reacting flow within the engine and near-field plumes of several small gaseous hydrogen-oxygen thrusters. The model solves the full Navier-Stokes equations coupled with species diffusion equations for a hydrogen-oxygen reaction kinetics system and includes a two-equation q-omega model for turbulence. Predictions of global performance parameters and localized flowfield variables are compared with experimental data in order to assess the accuracy with which these flowfields are modeled and to identify aspects of the model which require improvement. Predicted axial and radial velocities 3 mm downstream of the exit plane show reasonable agreement with the measurements. The predicted peak in axial velocity in the hydrogen film coolant along the nozzle wall shows the best agreement; however, predictions within the core region are roughly 15 percent below measured values, indicating an underprediction of the extent to which the hydrogen diffuses and mixes with the core flow. There is evidence that this is due to three-dimensional mixing processes which are not included in the axisymmetric model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.