Abstract
We studied electron transport in single wall carbon nanotubes placed in stationary homogeneous electric fields, oriented along tubes. Electron distributions for various electric fields are determined by solving stationary multi bands Boltzmann transport equation in presence of electron phonon scattering mechanisms. Contributions of all possible scattering channels, allowed by selection rules and energy conservation, are taken into account for finding scattering rate and collision integrals. As it is previously predicted, large electron drift velocities in straight single wall carbon nanotubes are obtained. Frequent electron scattering as well as low group velocity have strong impact on reduction of drift velocity in helically coiled carbon nanotubes.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have