Abstract

Mechanical stress or atomic density distribution in passivated metal lines is induced by electromigration, and plays an important role in the mechanism of electromigration damage. Recently, a governing parameter for electromigration damage in passivated polycrystalline lines, atomic flux divergence (AFDgen*), was formulated by adding the effect of the atomic density gradient to the governing parameter for electromigration damage in unpassivated polycrystalline lines, AFDgen. The latter has already been utilized to construct a prediction method for electromigration failure in unpassivated lines, as the first step toward the development of a practical method. In this article, a prediction method for electromigration failure in a passivated polycrystalline line is proposed using AFDgen*. It is shown that the proposed method is able to predict the failure location as well as the lifetime of the passivated polycrystalline lines. Both the lifetime and the failure location in a passivated polycrystalline line are predicted by means of numerical simulation of the failure process covering the building up of atomic density distribution, void initiation, void growth, and ultimately—line failure. The usefulness of this method is verified by an experiment where two passivated straight lines with different lengths are treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.