Abstract

A dynamic metabolic model is presented for Pediococcus pentosaceus producing lactic acid from lignocellulose-derived mixed sugars including glucose, mannose, galactose, arabinose, and xylose. Depending on the pairs of mixed sugars, P. pentosaceus exhibits diverse (i.e., sequential, simultaneous or mixed) consumption patterns. This regulatory behavior of P. pentosaceus is portrayed using the hybrid cybernetic model (HCM) framework which views elementary modes of the network as metabolic options dynamically modulated. Comprehensive data are collected for model identification and validation through fermentation experiments involving single substrates and various combinations of mixed sugars. Most sugars are metabolized rather sequentially while co-consumption of galactose and arabinose is observed. It is demonstrated that the developed HCM successfully predicts mixed sugar data based on the parameters identified mostly from single substrate data only. Further, we discuss the potential of HCMs as a tool for predicting intracellular flux distribution with comparison with flux balance analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.