Abstract

Chinese hamster ovary (CHO) cell culture has a major importance on the production of biopharmaceuticals, including recombinant therapeutic proteins such as monoclonal antibodies (MAb). Mathematical modeling of biological systems can successfully assess metabolism complexity while providing logical and systematic methods for relevant genetic target and culture parameter identification toward cell growth and productivity improvements. Most modeling approaches on CHO cells have been performed under stationary constraints, and only a few dynamic models have been presented on simplified reaction sets, due to substantial overparameterization problems. The hybrid cybernetic modeling (HCM) approach has been recently used to describe the dynamic behavior by incorporating regulation between different metabolic states by elementary mode participation control, with sets of equations evaluated by objective functions. However, as metabolic networks evaluated are constructed toward a genomic scale, and cell compartmentalization is considered, identification of the active set becomes more difficult as EM number exponentially grows. Thus, the development of robust approaches for EM active set selection and analysis with smaller computational requirements is required to impulse the use of cybernetic modeling on larger up to genome-scale networks. In this report, a novel elementary mode selection strategy, based on a polar representation of the convex solution space is presented and coupled to a cybernetic approach to model the dynamic physiologic and metabolic behavior of CHO-S cell cultures. The proposed Polar Space Yield Analysis (PSYA) was compared to other reported elementary mode selection approaches derived from Common Metabolic Objective Analysis (CMOA) used in Flux Balance Analysis (FBA), Yield Space Analysis (YSA), and Lumped Yield Space Analysis (LYSA). For this purpose, exponential growth phase dynamic metabolic models were calculated using kinetic rate equations based on previously modeled growth parameters. Finally, complete culture dynamic metabolic flux models were constructed using the HCM approach with selected elementary mode sets. The yield space elementary mode- and the polar space elementary mode- hybrid cybernetic models presented the best fits and performances. Also, a flux reaction perturbation prediction approach based on the polar yield solution space resulted useful for metabolic network flux distribution capability analysis and identification of potential genetic modifications targets.

Highlights

  • Mammalian cell culture has significant importance on the production of biopharmaceuticals, including recombinant therapeutic proteins such as monoclonal antibodies (MAb) (Ahn and Antoniewicz, 2011; Meshram et al, 2011; Nolan and Lee, 2012; Rodrigues et al, 2012)

  • All models followed the experimental behavior in good agreement

  • This late fermentation error increases on biomass calculations are the result of the interaction with the simplified first-order mathematical description of cell death, which results in an overestimation on the Xd

Read more

Summary

Introduction

Mammalian cell culture has significant importance on the production of biopharmaceuticals, including recombinant therapeutic proteins such as monoclonal antibodies (MAb) (Ahn and Antoniewicz, 2011; Meshram et al, 2011; Nolan and Lee, 2012; Rodrigues et al, 2012). CHO cell lines have shown to be stable, scalable, high-yield protein expression platforms with proper post-translational processing capabilities for several therapeutic applications (Nolan and Lee, 2011; Rodrigues et al, 2012; Kildegaard et al, 2013). Systematic screening and derived statistical information have been useful, but often do not offer any insight on cell metabolism and regulation, making the exploration of multiple process and genetic modification targets difficult to assess and perform (Nolan and Lee, 2012; Hagrot et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call