Abstract

For predicting the tool life combine the ant colony optimization(ACO) with the back propagation (BP) neural networks, use the the ACO to train BP neural network, build the prediction model based ACO-BP neural network. Some disadvantages are overcame in the BP algorithm, such as the low convergence speed, easily falling into local minimum point and weak global search capablity in the prediction process. Satisfies the requirement of global search capability and the robustness of the model. The experiment results show the prediction model has high precision in predicting the tool life. By the prediction model can provide a reasonable basis for planing production schedule and cutting tool requirement, calculating the cost, selecting the machining parameters,etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.