Abstract

Machining of fiber reinforced composites is an important activity in the integration of these advanced materials into engineering applications. Machining damage due to excessive cutting forces may result in rejecting the composite components at the last stages of their production cycle. Therefore, the ability to predict the cutting forces is essential for selecting process parameters that would result in minimum machining damage. This work utilizes mechanistic modeling techniques for simulating the cutting of carbon fiber-reinforced polymers (CFRP) with a helical end mill. A methodology is developed for predicting the cutting forces by transforming specific cutting energies from orthogonal cutting to oblique cutting. It is shown that the method developed is capable of predicting the cutting forces in helical end milling of unidirectional and multidirectional composites and over the entire range of fiber orientations from 0° to 180°. This is a significant improvement over previous models that were only capable of addressing orthogonal cutting and/or a limited range of fiber orientations. Model predictions were compared with experimental data and were found to be in good agreement in cutting unidirectional laminate, but with lesser agreement in the case of a multidirectional laminate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call