Abstract
Critical properties and acentric factor (ω) of 31 ionic liquids (ILs) were obtained by using vapor-liquid equilibrium data of solvent+IL consisting of P-T and P-x experimental data, based on three-parameter Patel-Teja equation of state and genetic algorithm. Optimized P c , T c and ω of ILs with Peng-Robinson equation of state (PR EoS) were used to model the behavior of phase equilibria of solvent+IL. Due to lack of experimental data for optimized properties, the validation was done by comparing them to the results in the literature. In each comparison the average absolute percent deviation (AAPD) for optimized properties was based on P-T experimental data, with PR EoS was minimum. For more confidence in the correctness of optimized properties, the behavior of phase equilibria of two new mixtures (i.e., water+emimDMP and methanol+emimDMP), the density and vapor pressure of some pure ILs were predicted by PR EoS, which the prediction of this EoS was satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.