Abstract

Since most ionic liquids (ILs) decompose before reaching their critical state, the experimental measurement of their critical properties are not possible. In this study, the critical temperatures, critical pressures and acentric factors of ten commonly investigated ILs were determined by making an optimum fit of the calculated vapor-liquid equilibrium data of binary mixtures of CO2+IL to the experimental values found in literature. For this purpose, the Peng-Robinson equation of state (PR EoS) and the differential evolution optimization method were used. The ILs considered were 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][Tf2N]), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf2N]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([hmim][Tf2N]), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). To evaluate the ability of the determined parameters in predicting the phase behavior of systems other than the systems that were used for parameter optimization, both sets of parameters obtained in this work and that of Valderrama et al. were used to predict bubble-point pressures of CHF3+[bmim][PF6] (by using the PR EoS and the Soave-Redlich-Kwong equation of state. The bubble-point pressures of CO2+IL systems optimized in this study by the PR EoS were also determined using the Soave-Redlich-Kwong equation of state (SRK EoS). In addition, liquid densities of pure ILs were predicted using a generalized correlation proposed by Valderrama and Abu-Shark. In all cases, the various predicted properties of these ten ILs, were in better agreement with the experimental data, using the critical properties and acentric factor obtained in this study, compared to the values suggested by Valderrama et al.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call