Abstract
Broadband noise is a significant part of the noise emitted by contra-rotating open rotors. Several noise sources can contribute to the total broadband sound field, with the most dominant ones probably being trailing edge noise, rotor-wake interaction noise and pylon-wake interaction noise. This paper addresses the prediction of these noise sources using analytical models based on Amiet’s flat plate airfoil theory and also to empirical turbulence models, fed by input data extracted from steady and unsteady CFD RANS simulations. The models are assessed against wind tunnel tests of Rolls-Royce’s rig 145 (build 1) conducted at the DNW anechoic open jet test facility using Rolls-Royce blades and Airbus pylons. The study showed promising results in terms of the ability of the models to predict acoustic power spectrum shapes, peak frequencies and absolute levels. The effects of changes in thrust on broadband wake-interaction noise are well reproduced. However, the models significantly underestimate the effect of thrust on trailing edge noise and the effect of rotational velocity on pylon interaction noise.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have