Abstract

Predicting concrete compressive strength using machine learning techniques has attracted the focus of many studies in recent years. Typically, given concrete mix ingredients, a machine learning model is trained on experimental data to predict properties of hardened concrete, such as compressive strength at 28 days. This study used computer-generated mix design data that contained mixed ingredients along with the corresponding theoretical strength of each mix to train a neural network and then test them on real-world experimental data. The developed model was able to predict the compressive strength of concrete specimens at 28 days with an R-value of 0.80. Furthermore, increasing the synthetic dataset increased the performance of the model to a point beyond which it started to decrease. The proposed sustainability-promoting method emphasizes the effectiveness of using synthetic data to train machine learning models that yield insightful predictions with acceptable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.