Abstract

PurposeThe prediction of by-product gas is an important guarantee for the full utilization of resources. The purpose of this research is to predict gas consumption to provide a basis for gas dispatch and reduce the production cost of enterprises.Design/methodology/approachIn this paper, a new method using the ensemble empirical mode decomposition (EEMD) and the back propagation neural network is proposed. Unfortunately, this method does not achieve the ideal prediction. Further, using the advantages of long short-term memory (LSTM) neural network for long-term dependence, a prediction method based on EEMD and LSTM is proposed. In this model, the gas consumption series is decomposed into several intrinsic mode functions and a residual term (r(t)) by EEMD. Second, each component is predicted by LSTM. The predicted values of all components are added together to get the final prediction result.FindingsThe results show that the root mean square error is reduced to 0.35%, the average absolute error is reduced to 1.852 and the R-squared is reached to 0.963.Originality/valueA new gas consumption prediction method is proposed in this paper. The production data collected in the actual production process is non-linear, unstable and contains a lot of noise. But the EEMD method has the unique superiority in the analysis data aspect and may solve these questions well. The prediction of gas consumption is the result of long-term training and needs a lot of prior knowledge. Relying on LSTM can solve the problem of long-term dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.