Abstract

PurposeTo develop and evaluate machine learning models based on MRI to predict clinically significant prostate cancer (csPCa) and International Society of Urological Pathology (ISUP) grade group as well as explore the potential value of radiomics models for improving the performance of radiologists for Prostate Imaging Reporting and Data System (PI-RADS) assessment.Material and methodsA total of 1616 patients from 4 tertiary care medical centers were retrospectively enrolled. PI-RADS assessments were performed by junior, senior, and expert-level radiologists. The radiomics models for predicting csPCa were built using 4 machine-learning algorithms. The PI-RADS were adjusted by the radiomics model. The relationship between the Rad-score and ISUP was evaluated by Spearman analysis.ResultsThe radiomics models made using the random forest algorithm yielded areas under the receiver operating characteristic curves (AUCs) of 0.874, 0.876, and 0.893 in an internal testing cohort and external testing cohorts, respectively. The AUC of the adjusted_PI-RADS was improved, and the specificity was improved at a slight sacrifice of sensitivity. The participant-level correlation showed that the Rad-score was positively correlated with ISUP in all testing cohorts (r > 0.600 and p < 0.0001).ConclusionsThis radiomics model resulted as a powerful, non-invasive auxiliary tool for accurately predicting prostate cancer aggressiveness. The radiomics model could reduce unnecessary biopsies and help improve the diagnostic performance of radiologists’ PI-RADS. Yet, prospective studies are still needed to validate the radiomics models further.Critical relevance statementThe radiomics model with MRI may help to accurately screen out clinically significant prostate cancer, thereby assisting physicians in making individualized treatment plans.Key points• The diagnostic performance of the radiomics model using the Random Forest algorithm is comparable to the Prostate Imaging Reporting and Data System (PI-RADS) obtained by radiologists.• The performance of the adjusted Prostate Imaging Reporting and Data System (PI-RADS) was improved, which implied that the radiomics model could be a potential radiological assessment tool.• The radiomics model lowered the percentage of equivocal cases. Moreover, the Rad-scores can be used to characterize prostate cancer aggressiveness.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.