Abstract

The hourly and daily measured clear-sky global solar radiation (G) and biologically important effective erythematic radiation (EER) incident on a horizontal surface at Cairo, Egypt (latitude 30° 05′ N & Longitude 31° 15′ E), during the period from January 1995 to December 2005 are used in this paper. The relationship between daily integrated totals of EER and the daily totals of broadband global solar radiation (250–2800nm) is established. The temporal variability of the percentage ratio of the total daily erythema to total daily broadband solar global irradiation (EER/G) is determined. The monthly and the seasonal averages of the extraterrestrial UVB solar radiation, Mesurad and estímated UVB solar radiation and clearness index KtUVB of UVB radiation are discussed. The average monthly mean variation of slant ozone (Z) and UVB transmission (KtUVB) at the present work are found. The two variables show an opposite seasonal behavior, and the average monthly of slant ozone column and UVB transmission values shows the relationship between them in a clearer way than those of daily values. The estimated values of UVB solar radiation a good agreement with the measured values of the UVB solar radiation, the difference between the estimated and measured values of UVB solar radiation varies from 1.2% to 2.8%. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) are presented and the correction factors are determined for removal of the ozone cycle. The seasonal variability of EER/G is also discussed. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) is presented and the correction factors are determined for removal of the ozone cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call